Skip to main content

Stuff people encrypt ....

Enigma rotors with alphabet rings
Rotors from an Enigma Machine

This week on the Introduction to Cyber Security MOOC (hosted on Futurelearn), the topic is cryptography.  Learners are having fun figuring out how Alice and Bob communicate while keeping their messages secure from Eve - and sharing some funny cartoons in the process.  One of the exercises we set was to use a PGP mail tool (Mailvelope) to sign and encrypt an email sent to a mailbox we set up specifically for the MOOC.  I have a mail rule that invokes a simple script to strip out the PGP message text, decrypt it and send it back to the learner in an email.

Although many people have successfully completed the task, there is a general consensus that routinely encrypting emails is unlikely to be adopted by most people.  The hurdles identified by people range from the impracticality of getting other people to use crypto in their communications, to the challenge of configuring the crypto tools and their general (lack of) usability.  It seems that Whitten and Tygar's findings on "Why Johnny Can't Encrypt" and Sheng et al's research on "Why Johny Still Can't Encrypt" continue to hold true.

It has also been interesting to check out the types of messages that learners are choosing to encrypt and send to us.  Many of them are along the lines of "This is a test message", but there also seems to be a significant proclivity towards "This is my secret message, please don't steal it".  However, the outlier by a long distance was the learner who encrypted and sent in the complete lyric to "Barbie Girl" by Aqua!
Post a Comment

Popular posts from this blog

Visual programming for 'wiring' the Internet of Things

There is a proliferation of devices being developed to form the building blocks of the Internet of Things (IoT), from Internet-connected power sockets and light bulbs to kettles, toasters and washing machines. However, to realise the full potential of the IoT, it will be necessary to allow these devices to interconnect and share data with each other to deliver the functionalities required by end-users. In recent research on end-user programming for the IoT, my colleagues Pierre Akiki, Yijun Yu and myself have proposed the notion of Visual Simple Transformations (ViSiT), that provides a visual programming paradigm for users to wire together IoT devices. The video above shows a demonstration of the ViSiT solution and full details of the approach will appear in an upcoming special issue of the ACM Transactions on Computer-Human Interaction (ToCHI).

This work is highlighted in a recent IEEE Software Blog: Empowering Users to Build IoT Software with a Puzzle-like Environment and full deta…

Privacy-by-Design Framework for Internet of Things Systems

IOT-2016 7-9 September, 2016, Stuttgart, Germany from Charith Perera
Recent DDoS attacks on key internet services, like the attack that affected the Dyn domain name service, highlighted the security challenges associated with the proliferation of insecure Internet of Things (IoT) systems.  This attack exploited common vulnerabilities like the use of default administration passwords on IoT devices such as internet-enabled CCTV cameras, internet-enabled appliances and smart home devices, to recruit over hundreds of thousands of nodes into a botnet.   This capability highlights the cyber security threats associated with the IoT and brings into sharp relief the importance of considering both security and privacy when designing these systems.

In recent work, presented at the Internet of Things Conference, we describe a privacy-by-design framework for assessing the privacy capabilities of IoT applications and platforms.  Building on more general design strategies for privacy in informaiton …

Privacy Itch and Scratch

Ubiquitous computing technologies are being used to collect, process and share increasing amounts of personal information, from our location and physical activity levels to the things we buy and the web pages we read.  Although these developments have created a wealth of new applications that engage and entertain us, they also pose significant challenges for our privacy - particularly the challenge of maintaining awareness and control over our personal information flows as we go about our daily lives.

My colleagues, Vikram Mehta, Blaine Price and Bashar Nuseibeh, and I have been exploring new interaction metaphors for enhancing our privacy awareness and control.  Our earlier work in this area used haptic interactions through the users' smartphone to enable privacy controls to be configured by physically shaking and moving the device (PrivacyShake).   More recently we have been exploring the role of on-body interfaces to achieve more subtle and non-intrusive mechanisms for privacy …